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Motivation
● Artificial recurrent neural networks

○ show powerful computational capabilities
○ achieve state of the art performance in:

■ machine translation, speech processing, video prediction, etc.
○ always employ specialized network architecture

■ LSTM, GRU

● Spiking recurrent neural networks
○ hard to demonstrate comparable computational properties



Artificial RNNs
● Specialized architecture
● Stable memory through cell state

Figure: Greffet al., LSTM: A search space odyssey, CoRR abs/1503.04069 
(2015)



Cell state in SNN?
● Neural adaptation

○ Allen Institute: Adaptation index of neurons
in neocortex of mouse and humans

● Simple model for adaptation:

The firing threshold ᬇ of an adaptive neuron contains a
time-varying component ᬀᬇ (t) that is temporarily increased by 
each of its spikes ᬗᬇ (t) and decays slowly. © 2010 Allen Institute for Brain Science.

Allen Human Brain Atlas.



LSNN model
● Two neuron types:

○ LIF neurons
○ LIF neurons with adaptive threshold

● Architecture

● Discrete time simulation (1ms step)
● Trained using BPTT (Bellec et al.)



Computational capabilities of LSNNs

Store-recall task:
memorize and recall
a single bit

Bit presented for
200ms



Importance of architecture
Proposed
architectures:

Time to convergence
(error < 5%):



Computational capabilities of LSNNs
Sequential MNIST:

● Classify images with pixels presented in sequential manner
● Analog to spike encoding



Sequential MNIST results
Architecture learned using
DEEP R (Bellec et al. 2018) 



Sequential MNIST results 
 



Sequential MNIST results
Impact of LSNN architecture
on the performance



TIMIT results
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LIF with adaptive threshold in discrete time (details)

Membrane potential: 
Threshold voltage:
Input current (weighted sum of spikes):

Spikes:

where H is a binary step function



Backpropagation through time (BPTT) in LSNN
Backpropagating gradient through spikes:

Back propagating through many timesteps is subject to exploding-vanishing gradients:

● Step function is not differentiable
● The gradients are propagated through step functions with a pseudo-derivative

● The slow dynamics of the adaptive threshold solves this issue
● similar to the memory units of LSTM



Thank you!
 



Pseudo-derivative of spiking neuron output
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LSNN model
 



Minimal LSNN solving store-recall task
Store-recall:
memorize single bit


