Gradient free optimization
methods

Arjun Rao, Thomas Bohnstingl, Darjan Salaj
Institute of Theoretical Computer Science

Why is this interesting?
e Backpropagating gradient through the environment is not always possible.

e \When sampling the gradient of reward using policy gradient, the variance of
the gradient increases with the length of the episode.

e Implementing backpropagation on a neuromorphic chip is nontrivial/not
possible

ES as stochastic gradient ascent

e The ES update aims to maximize the following fitness function

J(Y) = Ep, 9 [F(0)]
Where F(H) is the fitness function that is to be optimized
e This gives the following update rule

VI() = VoL, 0 [FO)
= E,,0) [F(0)Vylogpy(0)] - > [reinforce trick]

N
1

1=1

Wierstra et. al. 2014

ES as stochastic gradient descent

e The OpenAl-ES Algorithm is derived by the following
v E
0~ N (/"’7 U)

e This leads to the following update:

ZF)V 1log pu(0;)

:N—UQZZ:;F(@')(H -

Wierstra et. al. 2014

ES vs Finite Difference

e Finite difference estimates the gradient
of F(#)instead of J(v))

e ES with a high enough variance is not
caught by local variations

Joel Lehman et. al., 2018

(a) ES with o = 0.16

(c) ES with o = 0.002

(b) ES with o = 0.048

(d) FD with e = 1e -7

ES vs Finite Difference

e Finite difference estimates the gradient
of F(#)instead of J(v))

e ES with a high enough variance is not
caught by local variations

Joel Lehman et. al., 2018

(a) ES with o = 0.18

(d) ES with o = 0.18

(b) Finite Differences

R

(e) Finite Differences

ES vs Finite Difference

e Finite difference estimates the gradient
of F(#)instead of J(v))

e ES with a high enough variance is not
caught by local variations

Joel Lehman et. al., 2018

(a) ES with o = 0.16

(c) ES with o = 0.002

(b) ES with o = 0.04

_°

(d) FD with e = 1e -7

ES vs Finite Difference

e Finite difference estimates the gradient
of F(#)instead of J(v))

e ES with a high enough variance is not
caught by local variations

~ —— Value at Distribution Mean
—— Expected Value across Distribution

(I) SIO 1(I)O léO 260 2_;30
Iteration
(c) Reward of ES on the Gradient Gap Landscape

Joel Lehman et. al., 2018

—— Value at Distribution Mean
—— Expected Value across Distribution

0 100 200 300 400 500 600
Iteration

(b) Reward of ES on the Fleeting Peaks Landscape

1.0-

0.8 -

0.6 -

Fitness

0.2 -

0.0 -

—— Value at Distribution Mean
—— Expected Value across Distribution

0 25 50 75 100 125 150 175 200
Iteration
(a) Reward of ES on the Donut Landscape

ES vs Finite Difference

e Finite difference estimates the gradient
of F(#)instead of J(v))

e ES with a high enough variance is not
caught by local variations

e ES ends up selecting parameter regions
with lower parameter sensitivity

Joel Lehman et. al., 2018

(a) ES with o = 0.12

(c) ES with o = 0.0005

(b) ES with & = 0.04

(d) FD with € = 1e — 7

ES vs Finite Difference

e Finite difference estimates the gradient
of F(6)instead of J(v))

e ES with a high enough variance is not
caught by local variations.

e ES ends up selecting parameter regions
with lower parameter sensitivity

Joel Lehman et. al., 2018

Frequency

N
o

0,

o)
O

N
e

p ES
g80- Wmm TRPO

0

1000 2000 3000 4000 5000
Reward

(c) ES (o = 0.02) vs TRPO (0 = 0.02)

6000

7000

Variants of ES

Changing the distribution parameterization

e Covariance Matrix Adaptation - ES (Hansen and Ostermeier, 2001)
Using the natural gradient

e Exponential Natural Evolution Strategies (XNES) (wierstra et.al. 2014)
Changing distribution family

e Using heavy tailed cauchy distribution for multi-modal objective functions
(Wierstra et.al. 2014)

Parallelizability

OpenAl-ES is highly parallelizable

Each worker generates own copy of individuals

Consistent random generator ensures coherence

Each worker then simulates one of those individuals and returns the
fitness.

The fitness is communicated across all workers (all-to-all)

e Each worker then determines the next individual based on the communicated
fithesses

Salimans et. al. 2017

In Neuromorphic Hardware

Pros:

e No backpropagation implies that most computation is spent on calculating
the fitness function

e Neuromorphic hardware will enable very efficient parallel fithess
evaluation of spiking neural networks.

In Neuromorphic Hardware

Potential Pitfalls:

e Serialization involved in communication with
hardware
e Limits on parallel computation on Host Processor

Some Solutions:

e Limit data communicated by only perturbing subset of
parameters

e Implementation tricks of ES serve to reduce Host
processor computation.

Canonical ES

Back to Basics: Benchmarking Canonical Evolution Strategies for Playing Atari
Patryk Chrabaszcz, llya Loshchilov, Frank Hutter

University of Freiburg, Freiburg, Germany

arXiv:1802.08842, 2018

e Simpler algorithm then OpenAl version of NES
e Outperforms OpenAl ES on some Atari games
e Qualitatively different solutions

o Exploits game design, finds bugs

Comparison of OpenAl ES and Canonical ES

Algorithm 1: OpenAl ES

Algorithm 2: Canonical ES Algorithm

Input:

optimaizer - Optimizer function
o - Mutation step-size

A - Population size

0o - Initial policy parameters

F' - Policy evaluation function

forr=0 1, ...do

fori=1,2..%5do
Sample noise vector: €¢; ~ N (0, I)
Evaluate score in the game: s; <+ F(0; + 0 * €;)
Evaluate score in the game: s; +— F(0; — o * €;)

Compute normalized ranks: r = ranks(s),r; € [0,1)
Estimate gradient: g + — Zg\zl(m * €;)
| Update policy network: 011 < 0; + optimizer(g)

Input:

o - Mutation step-size

0 - Initial policy parameters

I - Policy evaluation function

A - Offspring population size

i - Parent population size

Initialize :

w; = #Ioggu—{—o.f})—log(i) ‘
j—1 log(n+0.5)—log(s)

fort =0,1,...do

for: =1..\do

Sample noise: €; ~ N (0, 1)

Evaluate score in the game: s; < F(0; + 0 * €;)

Sort (€1, ..., €x) according to s (e; with best s; first)
Update policy: 01 < 0 + 0 % 3 1, wj *€;
Optionally, update step size o (see text)

Comparison of OpenAl ES and Canonical ES

Algorithm 1: OpenAl ES

Algorithm 2: Canonical ES Algorithm

Input:

optimaizer - Optimizer function
o - Mutation step-size

A - Population size

0o - Initial policy parameters

F' - Policy evaluation function

mirrored sampling to reduce
the variance of estimate

forr=0 1, ...do

fori=1,2..5do
Sample noise vector: €; ~ N (0, 1)
Evaluate score in the game: s} < F(0; + 0 * €;)
Evaluate score in the game: s; < F(0; — o * €;)

Compute normalized ranks: r = ranks(s),r; € [0,1)
Estimate gradient: g + — S (1 x€)
| Update policy network: 6,1 < 0; + optimizer(g)

Input:

o - Mutation step-size

0y - Initial policy parameters
I - Policy evaluation function
A - Offspring population size
i - Parent population size
Initialize :

iy = log(pn+0.5)—log()
P T T log(it0.5)-log(5)

fort =0,1,...do
for: =1..\do
Sample noise: €; ~ N(0,1)

Evaluate score in the game: s; < F(0; + 0 * €;)

Sort (€1, ..., €x) according to s (e; with best s; first)
Update policy: 01 < 0 + 0 % 3 1, wj *€;
| Optionally, update step size o (see text)

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym.
arXiv preprint arXiv:1606.01540, 2016

Comparison of OpenAl ES and Canonical ES

Algorithm 1: OpenAl ES

Algorithm 2: Canonical ES Algorithm

Input:

optimaizer - Optimizer function
o - Mutation step-size

A - Population size

0o - Initial policy parameters

F' - Policy evaluation function

fitness shaping

forr=0 1, ...do

fori=1,2..%5do
Sample noise vector: €¢; ~ N (0, I)
Evaluate score in the game: s; <+ F(0; + 0 * €;)
Evaluate score in the game: s; < F(0; — o * €;)

Compute normalized ranks: r = ranks(s),r; € [0, 1)
Estimate gradient: g + — S (i x€)
| Update policy network: 011 < 0; + optimizer(g)

Input:

o - Mutation step-size

0y - Initial policy parameters

I - Policy evaluation function

A - Offspring population size

i - Parent population size

Initialize :

w; = uloggu—{—O.S)—log(i) .
41 log(p+0.5)—log(j)

fort =0,1,...do
for: =1..\do
Sample noise: €; ~ N(0,1)

weighted recombination

Evaluate score in the game: s; < F(0; + 0 * €;)

Sort (€1, ..., €x) according to s (e; with best s; first)
Update policy: 01 < 0y + 0 % 3, wj *€;
| Optionally, update step size o (see text)

Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jurgen Schmidhuber. Natural evolution strategies.

Journal of Machine Learning Research, 15(1):949-980, 2014

Comparison of OpenAl ES and Canonical ES

Algorithm 1: OpenAl ES

Algorithm 2: Canonical ES Algorithm

Input:

optimaizer - Optimizer function
o - Mutation step-size

A - Population size

0o - Initial policy parameters

F' - Policy evaluation function

modern gradient descent

(Adam or SGD with momentum)

forr=0 1, ...do

fori=1,2..%5do
Sample noise vector: €¢; ~ N (0, I)
Evaluate score in the game: s; <+ F(0; + 0 * €;)
Evaluate score in the game: s; +— F(0; — o * €;)

Compute normalized ranks: r = ranks(s),r; € [0,1)
Estimate gradient: g + — Zg\zl(m * €;)
| Update policy network: 0¢11 < 0; + optimizer(g)

w

~

Input:

o - Mutation step-size

0 - Initial policy parameters

I - Policy evaluation function

A - Offspring population size

i - Parent population size

Initialize :

w; = #Ioggu—{—o.f})—log(i) ‘
j—1108(p+0.5)—log(j)

fort =0,1,...do
for: =1..\do
Sample noise: €; ~ N(0,1)

Evaluate score in the game: s; < F(0; + 0 * €;)

Sort (€1, ..., €x) according to s (e; with best s; first)
Update policy: 01 < 0 + 0 % 3 1, wj *€;
Optionally, update step size o (see text)

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014

Results: trained on 800 CPUs in parallel

OpenAl ES | OpenAl ES (our) Canonical ES OpenAI ES (our) Canonical ES
1 hour 1 hour 1 hour 5 hours 5 hours

Alien 3040 + 276.8 2679.3 £1477.3 | 4940+ 0 5878.7 +1724.7
Alien 994 1733.7 +493.2 965.3 4+ 229.8 3843.3 £ 228.7 5331.3 +990.1
Alien 1522.3 4+ 790.3 885 £ 469.1 2253 £ 769.4 4581.3 4+ 299.1
BeamRider 792.3 £+ 146.6 774.5 £+ 202.7 4617.1 +1173.3 1591.3 £575.5
BeamRider 744 708.3 £194.7 746.9 £ 197.8 1305.9 + 450.4 965.3 +£441.4
BeamRider 690.7 + 87.7 719.6 +=197.4 714.3 +-189.9 703.5 £ 159.8
Breakout 14.3 + 6.5 17.5 +19.4 26.1 +5.8 105.7 £ 158
Breakout 9.5 118 4-3.3 13--17.1 19.4+6.6 80 +143.4
Breakout 11.4 4+ 3.6 10.7 £15.1 14,2 2.7 12.7= 17.7
Enduro 70.6 £ 17.2 84.9 + 22.3 115.4 +16.6 86.6 £ 19.1
Enduro 95 364124 50.5 +15.3 79.9 £ 18 10.9ck L7.T
Enduro 25.3 £ 9.6 7.6 = 5.1 58.2+10.5 69.4 4+ 32.8
Pong 21.0 £ 0.0 12.2= 16.6 21.0 £ 0.0 21.0 £ 0.0
Pong 21 21.0 £ 0.0 5.6 + 20.2 214 11.2£17.8
Pong 21.0 £ 0.0 0.3 = 20.7 2140 —9.8 1+ 18.6
Qbert 8275+ 0 8000 £ 0 12775 £ 0 263242 4 433050
Qbert 147.5 1400 £ 0 6625+ 0 5075+ 0 16673.3 + 6.2
Qbert 1250 £ 0 5850+ 0 4300 £ 0 5136.7 4+ 4093.9
Seaquest 1006 £ 20.1 1306.7 4+ 262.7 | 1424 &+ 26.5 2849.7 £ 599.4
Seaquest 1390 898 £+ 31.6 1188 4+ 24 1040+ 0 1202.7 £+ 27.2
Seaquest 887.3 £20.3 1170.7 4= 23.5 960 + 0 946.7 £ 275.1
Spacelnvaders 1191.3 4 84.6 896.7 £ 123 2326.5 4= 547.6 2186 4+ 1278.8
Spacelnvaders 678.5 983.7 £ 158.5 721.5 £ 115 1889.3 + 294.3 1685 4 648.6
Spacelnvaders 845.3 £ 69.7 571.3 £ 98.8 1706.5 +118.3 1648.3 £ 294.5

Qualitative analysis

Cons:

e In Seaquest and Enduro most of the ES runs converge to local optimum

o Performance plateaus in both algorithms
o Easy improvements with reward clipping (like in RL algorithms)

e Solutions not robust to the noise in the environment
o High variance in score across different initial environment conditions

Pros:

e In Qbert, canonical ES was able to find creative solutions

o Exploit flaw game design
o Exploit game implementation bug

e Potential for combining with RL methods

Escaping local optimum

Improving exploration in evolution strategies for deep reinforcement learning via a
population of novelty-seeking agents.

Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such, Joel Lehman, Kenneth O Stanley, and Jeff Clune
Uber Al Labs

arXiv:1712.06560, 2017

Escaping local optimum

e Deceptive and sparse rewards
o Need for directed exploration

Different methods for directed exploration:

e Based on state-action pairs
e Based on function of trajectory
o Novelty search (exploration only)
o Quality diversity (exploration and exploitation)

Single agent exploration

e Depth-first search 9 didadts

e Breadth-first search

e Problems
o Catastrophic forgetting
o Cognitive capacity of agent/model

Example from Stanton, Christopher and Clune, Jeff. Curiosity search: producing generalists by encouraging individuals to continually explore and acquire
skills throughout their lifetime. PloS one, 2016.

Multi agent exploration

i)

e Meta-population of M agents

e Separate agents become experts for
separate tasks

e Population of specialists
can be exploited by other ML algorithms

Example from Stanton, Christopher and Clune, Jeff. Curiosity search: producing generalists by encouraging individuals to continually explore and acquire
skills throughout their lifetime. PloS one, 2016.

Novelty Search

b(ﬂ' 9) - behavior characterization

A - archive of past b(7T 9)

N6, A) = N(b(me), A) = — 3 [[b(m) — by |2
51 %
S = kNN (b(rg), A)
= {b(ﬂ'l), b(ﬂ'z), cony b(ﬂ'k)}

NS-ES: 01 < 0"+ i Z N0, A)e;

=1

Quality diversity

ranked

QD-ES / NSR-ES: ﬂ

1 < f(0;™) + N(O;™, A)
O — 7 a— :
fy ST U T ana ; 2 €

MuJoCo Humanoid-v1

No deceptive reward

8000
Y e —
6000
©
g
= 4000
o
2000
0
0 100 200 300 400 500 600

Generation Number

Reward
N
o

-
[$)]

10

Deceptive reward

0 100 200 300 400 500 600 700 800
Generation Number

Atari

2500
2000

1500

Reward

1000

500

25

50

Seaquest

75 100 125
Generation Number

150

175

200

3500
3000
2500

2000

g

& 1500
1000

500

20

40

Frostbite

60 80 100
Generation Number

120

140

Genetic algorithms

Deep Neuroevolution: Genetic Algorithms are a Competitive Alternative for Training

Deep Neural Networks for Reinforcement Learning
Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O. Stanley, Jeff Clune
Uber Al Labs

e Uses a simple population-based genetic algorithm (GA)
e Demonstrates that GA is able to train a large neural networks
e Competitive results to reference algorithms (ES, A3C, DQN) on ATARI games

Algorithm

e Population P of N hyperparameter vectors 6 (neural network weights)
e Mutation applied N-1 times to T parents
0’=60+oc¢ wheree~N(O,I)
o o determined empirically

e Elitism applied to get N-th individual

e No crossover performed
o Can yield improvement in domains where a genomic representation is useful

Data compression

e Storing entire hyperparameter vectors of individuals scales poorly in memory

o Communication overhead for large networks with high parallelism

e Represent vector as initialization seed and a list of seeds to generate

individual

o Size grows linearly with number of generations, independent of hyperparameter vector length

Lineage
'90 = ¢(ty) 6 =(6°1,) 6% =y (6%,1,) 09t =909 %1, 69 =9(897 1)
09 61 92 091 09
n_,] _ n_,] 0 0 0 0 0
= +

wor, tn) 0 © 8(Tn) 2 6 61 67 697! o/

(r,) precomputed table § +o(r,) = +o(r,) = +ae(ry) =
O B B 991 65

Encoding{ [7o] [tg,74] [t Ty T, [ro,rl,...,rg_l] [ro,rl,...,rg]

1

Exploit structure in hyperparameter vector

e Hyperparameter vector is often more than just bunch of numbers

o Different components may need different values of 6

Individual

[J

Codes for function A (opa)

Codes for fuﬁction B (ORp)

e Crossover allows efficient transfer of modular functions

Parent A

Parent B

Offspring

Y
1

Comparison between GA and ES

Start GA| Start ES
‘ Generate one random

individual

Generate random
individuals

Mutate to get A individuals

Evaluate fitness

Ordering based
on fitness

Evaluate fitness e o o

Ordering based
on fitness

Combine [best parents
to a single individual

Mutate T best parents
to obtain N individuals

Evaluate fitness e o o Evaluate fitness e o o

Comparison between GA and CE

e Parents of generation can be viewed as centers of Gaussian distribution
o Offsprings can be viewed as samples from multimodal Gaussian distribution

@
©;

Conclusion

Simple vanilla population-based genetic algorithm
Improvements for GA’s from literature can also be included (e.g.: individual o)
Motivates the usage of hybrid optimization algorithms
During progress of paper authors realize that sampling the local
neighbourhood yields also good results for some domains

o Random search

Random Search

Simple random search provides a competitive approach to reinforcement learning
Horia Mania, Aurelia Guy, Benjamin Recht
University of California, Berkeley

e Uses a simple random search algorithm to solve continuous control problems
o Modifications to increase performance (Augmented Random Search ARS)

e Uses linear policies to solve MuJoCo locomotion tasks

e Demonstrate high robustness to optimizer parameter choices
o Relevant for practical applications?

Algorithm

e Sample N random directions
e Evaluate fitness for steps v and -v along directions (2*N evaluations)
e \Weight directions with fitness difference and linearly recombine them

Improvements:

e Scale update-step by standard deviation of collected rewards (ARS V1)
e State normalization (similar to whitening) (ARS V2)
e Discard directions which have low rewards (ARS V1-t / ARS V2-t)

Differences between ARS and ES

Algorithm 1: OpenAl ES

Algorithm 2: Canonical ES Algorithm

Input:

optimizer - Optimizer function
o - Mutation step-size

A - Population size

6o - Initial policy parameters

F' - Policy evaluation function

1 fort=0,1,..do

2 fori=1,2 .. 5do

3 Sample noise vector: €; ~ N (0, 1)

4 Evaluate score in the game: s} < F(0; + o * €;)
5 Evaluate score in the game: s; < F'(6; — o * €;)

a

Compute normalized ranks: r = ranks(s),r; € [0,1)
7 Estimate gradient: g < UTIA 2?21(7% * €;)
8 | Update policy network: 0;11 < 0; + optimizer(g)

No additional optimizer
No ranking mechanism
No virtual batch normalization

Input:

o - Mutation step-size

0o - Initial policy parameters

F" - Policy evaluation function

A - Offspring population size

1 - Parent population size

Initialize :

w; = “loggp,-&-O.S)—log(i) :
5—1 log(n+0.5)—log(4)

fort =0,1,...do

2 for:=1...\do

3 Sample noise: €; ~ N(0,I)

4 Evaluate score in the game: s; < F'(0; + 0 * ¢;)
Sort (€1, ..., €x) according to s (e; with best s; first)

6 Update policy: 041 < 0 + o * Z;.‘:l w; * €;

7 | Optionally, update step size o (see text)

e No virtual batch normalization

Conclusion

e Simple random search algorithm yields competitive results on some domains
o Robust to optimizer parameter choices

e Linear policy might not be sufficient for all domains
o They show that linear policies can solve MuJoCo locomotion tasks

e (Can be compared to ES with mirror sampling

Summary

Approaches 1
optimization without a utility model optimization with a surrogate utility model
Nating evolutionary methods
ethods
Algorithms | random population- 5;:E§EFS’|'ABB E?Aﬁ\stgEM' finite
g search based methods| |5penaes | |pi~2-cma | |differences

Policy Search in Continuous Action Domains: an Overview
Olivier Sigaud, Freek Stulp

Questions?

Algorithm 1 Simple Genetic Algorithm

Input: mutation function v, population size /N, number

. of selected individuals 7', policy initialization routine ¢,
GA AlgO rlth m fitness function F.

for g = 1,2..., G generations do
for : = 1,..., N — 1 in next generation’s population

do
if g = 1 then
PI=! = ¢(N(0,1)) {initialize random DNN}
else

k = uniformRandom(1, 7") {select parent}
PI = p(P?) {mutate parent}
end if
Evaluate F; = F(P?)
end for
Sort P¢ with descending order by F;
if g = 1 then
Set Elite Candidates C' <+ P~ |,
else
Set Elite Candidates C' <+ P{ o U {Elite}
end if
Set Elite +— arg maxycc 35 230:1 F(9)
P9 < [Elite, P9 — {Elite}] {only include elite once}
end for
Return: Elite

Basic Random Search (BRS) as starting point

Algorithm 1 Basic Random Search (BRS)

1:

Hyperparameters: step-size «, number of directions sampled per iteration N, standard devi-
ation of the exploration noise v
Initialize:) = 0, and 57 = 0.
while ending condition not satisfied do
Sample d1,02,...,dn of the same size as 0;, with i.i.d. standard normal entries.
Collect 2N rollouts of horizon H and their corresponding rewards using the policies

Tjk+(T) = 7o, 4ve, () and mjp (2) = 7o, —vs, (),

with £ € {1,2,...,N}.
Make the update step:

E

Ojr1=0;+ % D [r(mjk+) —r(mjk,~)] 0k .

e
I

1

7+ 7+1.
end while

Variants of BRS

e Modifications to increase performance of BRS
o Four different versions grouped under: Augmented Random Search (ARS)

e Scale update-step by variance of collected rewards (ARS V1)
e Apply state rescaling (similar to whitening) (ARS V2)

o Crucial to solve the Humanoid locomotion task

e Discard perturbations which have low rewards compared to others (ARS V1-t

/ ARS V2-t)
o (ARS V1/ARS V2) Limit where all perturbations are combined

ARS V1

e V1:BRS + scaling of update step
e Variation of reward increases
over the course of training

e Circumvents issue of finding
a suitable o or a schedule for it

e ES addresses this issue by
ranking followed by an
adaptive optimization algorithm

. state space dimensionality
p ... action space dimensionality

Algorithm 2 Augmented Random Search (ARS): four versions V1, V1-t, V2 and V2-t

1: Hyperparameters: step-size a, number of directions sampled per iteration N, standard devi-
ation of the exploration noise v, number of top-performing directions to use b (b < N is allowed
only for V1-t and V2-t)

2: Initialize: My =0 € RP*" g =0 € R", and ¥y =1, € R"*" j =0.
3: while ending condition not satisfied do
4: Sample 01, 0o, ...,0x5 in RP*™ with i.i.d. standard normal entries.
5. Collect 2N rollouts of horizon H and their corresponding rewards using the 2N policies
v)Tk (@) = (M +vop)e
Tjk,—(x) = (M; —vop)z

(

(
v {w,km) (M; + vy,) diag (3;) 7 (& — p;)
k= (1) = (M; — vdy) diag(8;) ™2 (z — 1)

for k€ {1,2,...,N}.
6: Sort the directions d, by max{r(mx,+),7(7jr,—)}, denote by dx) the k-th largest direction,
and by 7; 1)+ and 7; (), — the corresponding policies.
7: Make the update step:

b
My = M; + 558 > [r(miw.+) = r(mi.0,-)] 6o,
k=1

8 V2 : Set prj41, Xj41 to be the mean and covariance of the 2NH(] + 1) states encountered
from the start of tralmngﬂ

9 J+J+1

10: end while

ARS V2

e \/2: BRS + modified states

e Similar to whitening in regression

o Put equal weight on different
components of the state

e Mean and Covariance computed
over all states encountered so far

e \Without this trick, Humanoid
locomotion task is unsolvable

e Similar normalization also done
by ES

. state space dimensionality
p ... action space dimensionality

Algorithm 2 Augmented Random Search (ARS): four versions V1, V1-t, V2 and V2-t

1: Hyperparameters: step-size o, number of directions sampled per iteration NN, standard devi-
ation of the exploration noise v, number of top-performing directions to use b (b < N is allowed
only for V1-t and V2-t)

2: Initialize: My =0 € RP*" g =0 € R", and ¥y =1, € R"*" j =0.
3: while ending condition not satisfied do
4: Sample 01, 0o, ...,0y5 in RP*™ with i.i.d. standard normal entries.
5. Collect 2N rollouts of horizon H and their corresponding rewards using the 2N policies
v) Tik() = (M + vik)z
Tjk,—(x) = (Mj —vop)z
va. 1Tk +(@) = (M + viy)
Tjge,—(x) = (M; — vdy)

for k€ {1,2,...,N}.

6: Sort the directions d by max{r(mjx,+),7(7jk,—)}, denote by d the k-th largest direction
and by 7; 1)+ and 7; (), — the corresponding policies.

7: Make the update step:

b

My = M+ 52 [r(mm9,4) = 7(m5.60,-)] 80k
k=1

where o is the standard deviation of the 2b rewards used in the update step.

9 j<+<g+1
10: end while

ARS V1-t1 + V2-

o V1-t(V2-t): V1 (V2-1) +
drop of perturbations
with least improvement

e Discard perturbations if rewards

are small
o Average over directions with higher
Reward

e Additional optimizer parameter

e Whenb =N, V1 (V2) are obtained

. state space dimensionality
p ... action space dimensionality

Algorithm 2 Augmented Random Search (ARS): four versions V1, V1-t, V2 and V2-t

1:

Hyperparameters: step-size o, number of directions sampled per iteration NN, standard devi-
ation of the exploration noise v, number of top-performing directions to use b (b < N is allowed
only for V1-t and V2-t)

: Initialize: My =0¢€ RP*"™ 1y =0¢€ R", and ¥y =1, € R"*" j=0.
: while ending condition not satisfied do

Sample d1, 0, ...,y in RP*™ with i.i.d. standard normal entries.
Collect 2N rollouts of horizon H and their corresponding rewards using the 2N policies
vi:)Tk (@) = (M +vop)e
Tik,—(x) = (Mj —vop)z

(

(
V2. {”]k +(z) = (M; + viy,) diag (X j)—l/z (@ — p1y)
Tk —(z) = (M; — voy) diag(Z;) ™2 (x —)

for k€ {1,2,...,N}.
Sort the directions 6y by max{r(m;x,4),7(7jk,—)}, denote by d) the k-th largest direction,
and by 7;)+ and 7; 1), the corresponding policies.

Make the update step: Drop least performing
perturbations
b

My = My + 525 [r(mm9,4) = 7m0,)] 80k
k=1

where op is the standard deviation of the 2b rewards used in the update step.
V2 : Set p;q1, Xj41 to be the mean and covariance of the 2NH(j + 1) states encountered

8:
from the start of training

10:

jji+1
end while

Summary

ES
(Salimans et al. 2017)

e Unimodal
distribution
sampling

e Uses Adam

e Hard to overcome
local optima

Canonical ES
(Chrabaszcz et al. 2018)

e Unimodal
distribution sampling

e Neglects suboptimal
perturbations

e Hard to overcome
local optima

GA
(Petroski Such et al. 2018)
Pros:
e Multimodal individual
distribution
e FewHP’s
e Highly parallelizable
e High data

compression
e High potential for
improvements

ARS (Mania et al. 2018)

Pros:

e Unimodal

e Simple algorithm

e Low computational
complexity

e Data compression

e Neglects
suboptimal
perturbations

e Proposed for linear
policies

e Hard to overcome
[Pay

eal antima
Tooval U'.JLll T

| U D Y

ARS result

Maximum average reward after # timesteps

Task # timesteps | ARS PPO A2C CEM TRPO
Swimmer-v1 10° 361 ~110 ~ 30 ~(~120
Hopper-vl 10° 3047 ~2300 =900 ~ 500 ~ 2000
HalfCheetah-v1 10° 2345 ~1900 =~1000 ~—400 ~0
Walker2d-v1 10° 894 ~3500 =900 ~ 800 ~ 1000

ARS result continued

Average # timesteps to hit Th.

Task Threshold ARS ES TRPO
Swimmer-v1 128.25 6.00 - 10* 1.39-10° 4.59 - 10°
Hopper-v1 3403.46 2.00-10% 3.16-107 4.56 - 10°
HalfCheetah-v1 2385.79 5.86-10° 2.88-10° 5.00 - 109
Walker2d-v1 3830.03 8.14-10% 3.79-107 4.81 -10°

Experiments GA

ATARI games
o Experimental setup similar to Salimans et. al 2017
O
o Constant number of frames over GA run for comparison

Data preprocessing, Network architecture, Environments same as in Mnih et. al 2015

Image Hard Maze

O

(@)

Deceptive task with many local optima (“Traps”)
Novelty search used: reward behavior never
seen before

Goal =
Trap 2=p
Trap 1=p

Start =)

Evaluation Reward

0 50

100 150
Iteration

e [ES!
=—1iGA
—— GA-NS

=== Solution

A2C
-~ DON

200

250

GA results

DQN ES A3C RS GA GA
Frames 200M 1B 1B 1B 1B 6B
Time ~7-10d ~ 1h ~4d ~1lhor4h ~ lhor4h ~ 6hor24h
Forward Passes 450M 250M 250M 250M 250M 1.5B
Backward Passes 400M 0 250M 0 0 0
Operations 1.25B U 250M U IBU 250M U 250M U 1.5BU
amidar 978 112 264 143 263 377
assault 4,280 1,674 5,475 649 714 814
asterix 4,359 1,440 22,140 1,197 1,850 2,255
asteroids 1,365 1,562 4,475 1,307 1,661 2,700
atlantis 279,987 1,267,410 911,091 26,371 76,273 129,167
enduro 729 95 -82 36 60 80
frostbite 797 370 191 1,164 4,536 6,220
gravitar 473 805 304 431 476 764
kangaroo 7,259 11,200 94 1,099 3,790 11,254
seaquest 5,861 1,390 2,355 503 798 850
skiing -13,062 -15,443 -10,911 -7,679 7.6,502 f.5,541
venture 163 760 23 488 969 11,422
Zaxxon 5,363 6,380 24,622 2,538 6,180 7,864

GA results continued

DON ES A3C RSIB GA1B GAG6B

DQN 6 6 3 6 7
ES 7 7 3 6 8
A3C 7 6 6 6 7
RS 1B 10 10 7 13 13
GA 1B 7 i 7 0 13
GA 6B 6 5 6 0 0

Parallelizability

e Requires only communication of fitnesses, and can thus scale w.r.t parameter

vector size
e Perturbations are pre-generated and randomly sampled from for efficient

generation of individuals

