
Gradient free optimization 
methods

Arjun Rao, Thomas Bohnstingl, Darjan Salaj
Institute of Theoretical Computer Science



● Backpropagating gradient through the environment is not always possible.

● When sampling the gradient of reward using policy gradient, the variance of 
the gradient increases with the length of the episode.

● Implementing backpropagation on a neuromorphic chip is nontrivial/not 
possible

Why is this interesting?



ES as stochastic gradient ascent
● The ES update aims to maximize the following fitness function

Where           is the fitness function that is to be optimized
● This gives the following update rule

Wierstra et. al. 2014



ES as stochastic gradient descent
● The OpenAI-ES Algorithm is derived by the following

● This leads to the following update:

Wierstra et. al. 2014



ES vs Finite Difference

Joel Lehman et. al., 2018
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● ES with a high enough variance is not 
caught by local variations
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● Finite difference estimates the gradient 
of        instead of

● ES with a high enough variance is not 
caught by local variations.

● ES ends up selecting parameter regions 
with lower parameter sensitivity

ES vs Finite Difference

Joel Lehman et. al., 2018



Variants of ES
Changing the distribution parameterization

● Covariance Matrix Adaptation - ES (Hansen and Ostermeier, 2001)

Using the natural gradient

● Exponential Natural Evolution Strategies (xNES) (Wierstra et.al. 2014)

Changing distribution family

● Using heavy tailed cauchy distribution for multi-modal objective functions 
(Wierstra et.al. 2014)



● OpenAI-ES is highly parallelizable
● Each worker generates own copy of individuals
● Consistent random generator ensures coherence
● Each worker then simulates one of those individuals and returns the 

fitness.
● The fitness is communicated across all workers (all-to-all)
● Each worker then determines the next individual based on the communicated 

fitnesses

Parallelizability

Salimans et. al. 2017



Pros:

● No backpropagation implies that most computation is spent on calculating 
the fitness function

● Neuromorphic hardware will enable very efficient parallel fitness 
evaluation of spiking neural networks.

In Neuromorphic Hardware



Potential Pitfalls:

● Serialization involved in communication with 
hardware

● Limits on parallel computation on Host Processor

Some Solutions:

● Limit data communicated by only perturbing subset of 
parameters

● Implementation tricks of ES serve to reduce Host 
processor computation.

In Neuromorphic Hardware



Canonical ES
Back to Basics: Benchmarking Canonical Evolution Strategies for Playing Atari
Patryk Chrabaszcz, Ilya Loshchilov, Frank Hutter
University of Freiburg, Freiburg, Germany
arXiv:1802.08842, 2018

● Simpler algorithm then OpenAI version of NES
● Outperforms OpenAI ES on some Atari games
● Qualitatively different solutions

○ Exploits game design, finds bugs



Comparison of OpenAI ES and Canonical ES



Comparison of OpenAI ES and Canonical ES

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym.
arXiv preprint arXiv:1606.01540, 2016



Comparison of OpenAI ES and Canonical ES

Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jurgen Schmidhuber. Natural evolution strategies.
Journal of Machine Learning Research, 15(1):949–980, 2014



Comparison of OpenAI ES and Canonical ES

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014



Results: trained on 800 CPUs in parallel



Qualitative analysis

Cons:

● In Seaquest and Enduro most of the ES runs converge to local optimum
○ Performance plateaus in both algorithms
○ Easy improvements with reward clipping (like in RL algorithms)

● Solutions not robust to the noise in the environment
○ High variance in score across different initial environment conditions

Pros:

● In Qbert, canonical ES was able to find creative solutions
○ Exploit flaw game design
○ Exploit game implementation bug

● Potential for combining with RL methods



Escaping local optimum

Improving exploration in evolution strategies for deep reinforcement learning via a 
population of novelty-seeking agents.
Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such, Joel Lehman, Kenneth O Stanley, and Jeff Clune
Uber AI Labs
arXiv:1712.06560, 2017

Novelty search 1 (exploration only)
Quality diversity 2 3 4 (exploration and exploitation)

1Lehman, Joel and Stanley, Kenneth O. Novelty search and the problem with objectives. In Genetic Programming Theory 
and Practice IX 2011
2Cully, A., Clune, J., Tarapore, D., and Mouret, J.-B. Robots that can adapt like animals. Nature, 521:503–507, 2015
3Mouret, Jean-Baptiste and Clune, Jeff. Illuminating search spaces by mapping elites. arXiv:1504.04909, 2015
4Pugh, Justin K, Soros, Lisa B., and Stanley, Kenneth O. Quality diversity: A new frontier for evolutionary computation. 2016



Escaping local optimum
● Deceptive and sparse rewards

○ Need for directed exploration

Different methods for directed exploration:

● Based on state-action pairs
● Based on function of trajectory

○ Novelty search (exploration only)
○ Quality diversity (exploration and exploitation)



Single agent exploration

Example from Stanton, Christopher and Clune, Jeff. Curiosity search: producing generalists by encouraging individuals to continually explore and acquire 
skills throughout their lifetime. PloS one, 2016.

● Depth-first search
● Breadth-first search
● Problems

○ Catastrophic forgetting
○ Cognitive capacity of agent/model



Multi agent exploration

Example from Stanton, Christopher and Clune, Jeff. Curiosity search: producing generalists by encouraging individuals to continually explore and acquire 
skills throughout their lifetime. PloS one, 2016.

● Meta-population of M agents
● Separate agents become experts for 

separate tasks
● Population of specialists

can be exploited by other ML algorithms



Novelty Search

NS-ES:



Quality diversity

QD-ES / NSR-ES: ranked



MuJoCo Humanoid-v1
                No deceptive reward                                      Deceptive reward



Atari
                          Seaquest                                                       Frostbite



Genetic algorithms
Deep Neuroevolution: Genetic Algorithms are a Competitive Alternative for Training 
Deep Neural Networks for Reinforcement Learning
Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O. Stanley, Jeff Clune
Uber AI Labs

● Uses a simple population-based genetic algorithm (GA)
● Demonstrates that GA is able to train a large neural networks
● Competitive results to reference algorithms (ES, A3C, DQN) on ATARI games



Algorithm
● Population  of N hyperparameter vectors ᶚ (neural network weights)
● Mutation applied N-1 times to T parents

ᶚ’ = ᶚ + ᶥ ᶭ   where ᶭ ~ N(0, I)
○ ᶥ determined empirically

● Elitism applied to get N-th individual

● No crossover performed
○ Can yield improvement in domains where a genomic representation is useful



Data compression
● Storing entire hyperparameter vectors of individuals scales poorly in memory

○ Communication overhead for large networks with high parallelism

● Represent vector as initialization seed and a list of seeds to generate 
individual

○ Size grows linearly with number of generations, independent of hyperparameter vector length

ᶐ(ᶚn-1, ᶦn) = ᶚn-1 + ᶥ ᶗ(ᶦn)
ᶗ(ᶦn) precomputed table



Exploit structure in hyperparameter vector
● Hyperparameter vector is often more than just bunch of numbers

○ Different components may need different values of ᶥ

● Crossover allows efficient transfer of modular functions



Comparison between GA and ES



Comparison between GA and CE
● Parents of generation can be viewed as centers of Gaussian distribution

○ Offsprings can be viewed as samples from multimodal Gaussian distribution



Conclusion
● Simple vanilla population-based genetic algorithm
● Improvements for GA’s from literature can also be included (e.g.: individual ᶥ) 
● Motivates the usage of hybrid optimization algorithms
● During progress of paper authors realize that sampling the local 

neighbourhood yields also good results for some domains
○ Random search 



Random Search
Simple random search provides a competitive approach to reinforcement learning
Horia Mania, Aurelia Guy, Benjamin Recht
University of California, Berkeley

● Uses a simple random search algorithm to solve continuous control problems
○ Modifications to increase performance (Augmented Random Search ARS)

● Uses linear policies to solve MuJoCo locomotion tasks
● Demonstrate high robustness to optimizer parameter choices

○ Relevant for practical applications?



Algorithm
● Sample N random directions
● Evaluate fitness for steps ᶟ and -ᶟ along directions (2*N evaluations)
● Weight directions with fitness difference and linearly recombine them

Improvements:

● Scale update-step by standard deviation of collected rewards (ARS V1)
● State normalization (similar to whitening) (ARS V2)
● Discard directions which have low rewards (ARS V1-t / ARS V2-t)



Differences between ARS and ES

● No additional optimizer
● No ranking mechanism
● No virtual batch normalization

● No virtual batch normalization



Conclusion
● Simple random search algorithm yields competitive results on some domains

○ Robust to optimizer parameter choices

● Linear policy might not be sufficient for all domains
○ They show that linear policies can solve MuJoCo locomotion tasks

● Can be compared to ES with mirror sampling



Summary

Policy Search in Continuous Action Domains: an Overview
Olivier Sigaud, Freek Stulp



Questions?



GA Algorithm



Basic Random Search (BRS) as starting point



Variants of BRS
● Modifications to increase performance of BRS

○ Four different versions grouped under: Augmented Random Search (ARS)

● Scale update-step by variance of collected rewards (ARS V1)
● Apply state rescaling (similar to whitening) (ARS V2)

○ Crucial to solve the Humanoid locomotion task

● Discard perturbations which have low rewards compared to others (ARS V1-t 
/ ARS V2-t)

○ (ARS V1 / ARS V2) Limit where all perturbations are combined 



ARS V1
● V1: BRS + scaling of update step
● Variation of reward increases

over the course of training

● Circumvents issue of finding
a suitable ⍺ or a schedule for it

● ES addresses this issue by
ranking followed by an 
adaptive optimization algorithm

n … state space dimensionality
p … action space dimensionality



ARS V2
● V2: BRS + modified states
● Similar to whitening in regression

○ Put equal weight on different 
components of the state

● Mean and Covariance computed
over all states encountered so far

● Without this trick, Humanoid 
locomotion task is unsolvable

● Similar normalization also done
by ES

n … state space dimensionality
p … action space dimensionality



ARS V1-t + V2-t
● V1-t (V2-t): V1 (V2-t) + 

drop of perturbations 
with least improvement

● Discard perturbations if rewards 
are small 

○ Average over directions with higher
Reward

● Additional optimizer parameter

● When b = N, V1 (V2) are obtained

n … state space dimensionality
p … action space dimensionality



Summary
ES 
(Salimans et al. 2017)

● Unimodal 
distribution 
sampling

● Uses Adam
● Hard to overcome 

local optima

Canonical ES 
(Chrabaszcz et al. 2018)

● Unimodal 
distribution sampling

● Neglects suboptimal 
perturbations

● Hard to overcome 
local optima

●

ARS (Mania et al. 2018)

Pros:
● Unimodal
● Simple algorithm
● Low computational 

complexity
● Data compression
● Neglects 

suboptimal 
perturbations

Cons:
● Proposed for linear 

policies
● Hard to overcome 

local optima
● Neglecting 

parameter vector 
structure 

GA 
(Petroski Such et al. 2018)

Pros:
● Multimodal individual 

distribution
● Few HP’s
● Highly parallelizable
● High data 

compression
● High potential for 

improvements
Cons:

●



ARS result



ARS result continued



Experiments GA
● ATARI games

○ Experimental setup similar to Salimans et. al 2017
○ Data preprocessing, Network architecture, Environments same as in Mnih et. al 2015
○ Constant number of frames over GA run for comparison

● Image Hard Maze
○ Deceptive task with many local optima (“Traps”)
○ Novelty search used: reward behavior never 

seen before



GA results



GA results continued



Parallelizability
● Requires only communication of fitnesses, and can thus scale w.r.t parameter 

vector size
● Perturbations are pre-generated and randomly sampled from for efficient 

generation of individuals


