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Brain-inspired Al:
Spiking neural networks and neuromorphic
hardware



“Deep Learning” /
Artificial Neural Networks
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Why?

e Al advances were driven by hardware availability

e GPUs exploited for deep learning

NVIDIA.
CUDA

e von Neumann architecture

o Scalability
o Latency
o Energy usage

All of the issues above are related!
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== Nletwork Bandwidth
e Data Growth

- = Moore’s Law

e CPU performance

== == Compute-Data Gap
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Researchers show glare of energy

Creating an Al can be five times consumption in the name of deep
worse for the planet than a car learning
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Artificial intelligence / Machine learning

Al Can Do Great Things—if It Doesn't Training a single Al model can emit as much carbon
Burn the Planet as five cars in their lifetimes

The computing power required for Al landmarks, such as recognizing images and Deep learning has aterrible carbon footprint.

defeating humans at Go, increased 300,000-fold from 2012 to 2018.
by KarenHao June 6,2019
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Back to the original inspiration for neural networks

Spiking neural networks tackle the fundamental problems of
current deep learning solutions.

Human brain does well on most of the ML tasks
using only ~20 W of energy [1]

[1] https://www.munichre.com/topics-online/en/digitalisation/interview-henning-beck.html
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Artificial Neural Networks
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Spiking Neural Networks
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Artificial Neural Networks Biological Neural Networks
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Spiking Neural Networks
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Artificial Neural Networks

Memory and processing separate
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Traditicnal von Neumann architecture

Spiking Neural Networks
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Principles of Neural Computation
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Neuromorphic hardware

Intel Loihi (US)
SpiNNaker 1 (UK)
SpiNNaker 2 (Germany)
BrainScaleS (Germany)
Qualcomm Zeroth (US)

Sensors becoming widely available
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e Samsung SmartThings Vision
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Example: SNN in TensorFlow!

| made a spiking LSTM alternative:
Long short-term memory and learning-to-learn in networks of

spiking neurons
G Bellec, D Salaj, A Subramoney, R Legenstein, W Maass

Advances in Neural Information Processing Systems, 787-797

Code:
[ dsalaj/ GoogleSpeechCommandsRNN

0 IGITUGraz / LSNN-official
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http://papers.nips.cc/paper/7359-long-short-term-memory-and-learning-to-learn-in-networks-of-spiking-neurons
http://papers.nips.cc/paper/7359-long-short-term-memory-and-learning-to-learn-in-networks-of-spiking-neurons
https://github.com/dsalaj/GoogleSpeechCommandsRNN
https://github.com/IGITUGraz/LSNN-official
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