

Brain-inspired AI: Spiking neural networks and neuromorphic hardware

Karlsruhe, 2. Oct 2020

inovex

- Al advances were driven by hardware availability
- GPUs exploited for deep learning
- von Neumann architecture
 - Scalability
 - Latency
 - Energy usage

All of the issues above are related!

inovex

4

NEWSLETTERS Sign up to read our regular email newsletters

News Podcasts Video Technology

NewScientist

Space Physics Health More × Shop Tours Events

Creating an AI can be five times worse for the planet than a car

WILL KNIGHT BUSINESS 01.21.2020 07:00 AM

AI Can Do Great Things—if It Doesn't Burn the Planet

The computing power required for AI landmarks, such as recognizing images and defeating humans at Go, increased 300,000-fold from 2012 to 2018.

¬ ech 🎗 plore		
Home / Energy & Green Tech Home / Machine learning & Al	\$ 100	Ē

() JUNE 9, 2019 [WEBLOG]

Researchers show glare of energy consumption in the name of deep learning

by Nancy Cohen , Tech Xplore

Artificial intelligence / Machine learning

Training a single AI model can emit as much carbon as five cars in their lifetimes

Deep learning has a terrible carbon footprint.

by Karen Hao

Back to the original inspiration for neural networks

Spiking neural networks tackle the **fundamental problems** of current deep learning solutions.

inovex

Human brain does well on most of the ML tasks using only ~20 W of energy [1]

[1] https://www.munichre.com/topics-online/en/digitalisation/interview-henning-beck.html

Biological Neural Networks

Biological Neural Networks

Spiking Neural Networks

Biological Neural Networks

Spiking Neural Networks

- Event based / binary communication
- Implicit time
- Leaky accumulator
- Sparse output

Memory and processing separate

Spiking Neural Networks

Colocation of memory and processing

Principles of Neural Computation

Fine-grained parallelism

Event-driven computation

Low precision and stochastic

Adaptive, self-modifying

Neuromorphic hardware

- Intel Loihi (US)
- SpiNNaker 1 (UK)
- SpiNNaker 2 (Germany)
- BrainScaleS (Germany)
- Qualcomm Zeroth (US)

Sensors becoming widely available

• Samsung SmartThings Vision

Example: SNN in TensorFlow!

I made a spiking LSTM alternative:

Long short-term memory and learning-to-learn in networks of spiking neurons

G Bellec, D Salaj, A Subramoney, R Legenstein, W Maass

Advances in Neural Information Processing Systems, 787-797

Code:

dsalaj / GoogleSpeechCommandsRNN
IGITUGraz / LSNN-official

Vielen Dank

Darjan Salaj DMA

inovex GmbH Ludwig-Erhard-Allee 6 76131 Karlsruhe

dsalaj@inovex.de

